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EXECUTIVE SUMMARY

This report presents work performed under the general topic of High-Speed Research, Flight-Deck

Systems. The sensor of choice is an Airborne Moving-Target-Indicator (AMTI) radar, which is

a Pulse-Doppler radar equipped with AMTI signal processor. Our specific area of interest is

detecting airborne obstacles, while the aircraft is in the phase of final approach for landing (or

during takeoff). An adjunct area, due to be addressed under a different cover, is the detection

of obstacles on the runway during the same phases of flight.

The main impediment to successful obstacle detection is the interference of terrain clutter.

This problem aside, even a non-AMTI radar is capable of detecting typical airborne obstacles

—moving or stationary (floating)— at ranges in the order of 20 mi. In X-band frequencies, it is

the ground clutter —not receiver noise or weather attenuation— against which the target signal

has to compete. Depending on the geometry, this clutter is received through either the main

antenna lobe or its sidelobes. To determine which antenna lobes contribute clutter, one has to

find the ground intersection (for a flat terrain, it’s a circle) with the sphere of radius equal to

the target range. The angles from the antenna boresight to points on this line of intersection,

and the antenna beam pattern, determine which lobes receive clutter. Therefore, assuming a

horizontal antenna pointing, the higher the flight altitude, and the shorter the range, the farther

(angularly) the deleterious sidelobes are from boresight —meaning less clutter. This is why there

is no much concern about obstacle detection during the cruise phase of the flight.

In the approach-for-landing phase of the flight, the geometry becomes of concern because of

the low-altitudes involved. It becomes much more likely that the main lobe —not a sidelobe—

will intersect the ground at the same range as a potential airborne obstacle. In such a case, the

obstacle and the ground clutter are similarly weighted by the main lobe, and the ground clutter

will typically overwhelm the target signal —even for very close targets (such as 1 mi). This is

where the AMTI emerges as a possible solution.

Various AMTI methods have been discussed in the open literature —which is our sole

source of information. Our analysis shows that much of the claims in the literature are highly

optimistic —at least, as far as the AMTI methods we investigated here are concerned. In

this work, we analyzed AMTI methods which are based on Azimuth/Elevation (Az/El) error

corrections for the equivalent-clutter direction. This can only be successful if, for any given

range-gate, the clutter direction is highly correlated over time. In our simulation, we found that

the equivalent-clutter direction wanders quite erratically from pulse to pulse (a phenomenon

known as Glint) —even when the Pulse-Repetition-Frequency is as high as 10,000 pulses-per-

second. We found that this behavior is very similar with either a Phase- or Amplitude-Monopulse



Az/El errors measurements. On the other hand, we have found that there is a much higher

“spatial” correlation, that is, among neighboring range-gates at the same pulse (or time). Using

that behavior, we came up with an algorithm that attenuates clutter to the point that a typical

obstacle can be detected in the final-approach or takeoff phases.
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1 INTRODUCTION – THE AMTI RADAR

In this section we give a brief review of Moving-Target-Indicator (MTI) radar systems (which

are stationary) and of AMTI which is their Airborne counterpart. There are many approaches

to AMTI processing. Out of these, we concentrate here on methods that either employ Phase-

or Amplitude-Monopulse processing.

Let us start with the basics of MTI. A moving target returns transmitted energy at a

frequency which is higher or lower than the carrier by the Doppler frequency, fd.

fd = ±2vr/λ , (1)

where λ is the carrier wavelength. The plus sign applies to an approaching target with radial

velocity vr and the minus sign applies to a receding target. Assume we are using a pulsed radar

to observe a moving target. The envelope of the video voltage, after the high-frequency received

signal has been converted down to baseband, can be written as

E2 = E sin(2πfdt+ φ), (2)

where φ is the phase shift due to range relative to that of the reference oscillator, and E is the

amplitude of the video envelope. This voltage can be thought of as a pulse train at the pulse

repetition frequency (PRF), fr, modulated by a sin function or, alternatively, as a sin function

sampled by a train of pulses. This signal is typically fed into two channels where one channel

includes a delay of value equal to a single interpulse period, T (T = 1/fr). The delayed signal

can be written as

E1 = E sin[2πfd(t− 1/fr) + φ] (3)

The subscripts 1 and 2 on E denote the order of arrival of the pulses. Delaying E1 by T shifts

its whole train of pulses so that they coincide in time with the un-shifted train of pulses E2. A

simple canceler for stationary targets (for which fd = 0) is formed by subtracting the delayed

from the un-delayed signal on a pulse-by-pulse basis, that is,

Er = E2 − E1 = 2E sin

(
πfd
fr

)
cos [2πfd(t− 0.5/fr) + φ] . (4)

The difference voltage is a train of pulses modulated by a cosine waveform at the Doppler

frequency whose amplitude depends on the ratio between that frequency and the PRF. It is seen

that there exist Doppler frequencies, in addition to fd = 0, for which the output is zero. These

are called blind speeds which occur when

fblind = nfr ; n an integer, (5)
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and the corresponding blind speeds are

vblind = nfr
λ

2
; n an integer (6)

figure= yair/tex/ps/mtifig1.eps,height=3.5in

Figure 1: MTI 1-delay filter power gain (DC suppression)

The value of the Difference signal Er depends on the phase φ. In practice, this dependency

is eliminated by quadrature processing, and Er is thus treated as a complex function of time,

or a phasor. Detection is performed by summing up the squares of the real and imaginary

channels (the traditional I2 +Q2) which is a value that represents power. figure 1 shows the

power dependency on the ratio of Doppler-to-PRF frequencies fd/fr. The region of interest on

this graph is around zero. In other words, this is a filter which suppresses all stationary targets

(that have zero fd). The above single-delay canceler serves to explain the basic idea of DC

suppression. In practice, double-delay cancelers and more complicated digital filters are used

to create deeper nulls at DC and, sometimes, also at other Doppler frequencies, such as those

received from jammers in military applications. In the above we gave a simplified explanation of

MTI processing methods. For more information on this subject we refer the reader to references

such as [?], [?], [?], and [?].

Airborne MTI (AMTI) extends ground-based MTI into the realm of airborne applications.

Since the radar platform is in motion, every point on the ground moves with respect to the radar,

and thus contributes a Doppler frequency proportional to its relative speed. The basic idea here

is to shift all Doppler frequencies, originating from the radar-beam footprint on the ground, by

their average. A technique called TACCAR (time-averaged-clutter coherent airborne radar) is

commonly used for this purpose. It works by adaptively shifting the intermediate frequency (IF)

of the receiver using a closed-loop control system that minimizes the total Doppler leakage out

of the MTI filter (e.g., [?]). This amounts to centering the Doppler spectrum on the null of the

MTI filter. However, no matter how deep that null is, the spectrum is always of a finite width,

and thus will always leak through the filter to some extent. This problem is referred to in the

literature as Platform Motion Effect.

The next step in AMTI development was to cancel out the above leakage. The remedy

came in the form of a method called Displaced Phase Center Antenna (DPCA). There are two

conceptual ways of accomplishing this. One is through using two physical antennas which are

displaced along the longitudinal airplane axis, and the other is through an electronic equivalent.

The idea behind using two physical antennas is that the aft antenna can, in principle, transmit
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and receive a pulse from the same location in space where the fore antenna transmitted and

received the previous pulse. This means that the distance between the two antennas, d, should

equal the distance traveled by the aircraft during the interpulse time, that is, d = vT , where v is

the aircraft speed. T can be controlled by an on-line adaptation of the PRF. Thus, ideally, two

pulses transmitted and received from the same location in space emulate a stationary radar to

which standard MTI methods can be applied. However, the problem with this method is that,

in addition to the antenna spacing constraint, there are many other conditions that have to be

met in order to achieve good performance in practice. For example, the two antennas have to

be identical, and the aircraft has to fly with zero side slip and angle of attack. The electronic

DPCA offers another alternative which is more practical to mechanize; this is explained in the

following.

figure=/home/windchime/u/yair/tex/ps/mtifig2.eps,height=4.0in

Figure 2: The basic AMTI geometry

In Fig 2 we show the basic geometry. Vectors are denoted by capital letters and their length

by the corresponding lower-case letters. Also, we write the three components of vectors in square

brackets separated by commas, and location of points by regular brackets separated by commas.

V is the velocity vector in the direction of the Y axis. The aircraft is located above the origin at

point a: (0, 0, h). Point c at (x0, y0, 0) on the ground is where the antenna boresight pierces the

X, Y plane. The vector pointing to this point from the aircraft is R0. The antenna boresight is

at an angle α from the velocity vector; it is found in the slanted plane, denoted by P , which is

parallel to the Y axis.

We assume that the antenna pointing is performed by first lowering its axis by the depression

angle γ, and then scanning in azimuth by the angle φ. It is seen in Fig 2 that, for a fixed γ, the

antenna axis is confined during azimuth scanning to the plane denoted by Q which contains the

vector R0 and is parallel to the X axis.

The Platform Motion Effect is caused by the difference in radial velocities between that

of the boresight piercing point, c, and those of all other ground points found in the antenna

footprint such as point d: (x, y, 0) in figure 2. For this point, the radial velocity difference is

given by

ve = v[cos(α + ∆α)− cosα] = −vx sin ∆α− 2vy sin2 ∆α

2
, (7)

where

vx
∆
= v sinα; vy

∆
= v cosα (8)

and ∆α is the difference between the α of point d and that of point c (notice they are not in

the same plane). Since ∆α is a small angle in the order of the beam-width, we can neglect the
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second term compared to the first, so

ve ≈ −vx sin ∆α (9)

Since we assumed that the AMTI already compensates for the radial Doppler velocity of point

c, the Doppler frequency from (x, y, 0), is

fd = −2vx
λ

sin ∆α ; (10)

it is negative because the point d is receding compared to c, but we will ignore the sign for

simplicity.

figure=/home/windchime/u/yair/tex/ps/mtifig3.eps,height=1.8in

Figure 3: The DPCA phasors compensation

In electronic DPCA the idea is to add appropriate vectors to the phasors of two consecu-

tive pulses (from the same antenna) so as to bring them to equality, which will enable perfect

cancelation in an MTI delay-line-type canceler as explained above. This is shown in Figure ??.

The phasor of the first pulse is E1 and that of the second pulse is E2. The angle between them,

denoted by 2η, is given by

2η = 2πfdT =
4πvxT sin ∆α

λ
(11)

Idealized correction phasors Ec1 and Ec2 are added to the original received phasors at 900 phase

angles as shown in the figure. For perfect cancelation, the length of these phasors should be

Ec = E1 tan η = Σ(∆α) tan
2πvxT sin ∆α

λ
, (12)

where Σ(∆α) is the Sum pattern of a two- or four-lobe antenna —similar to that used in a

Phase- or Amplitude-Monopulse radar. In such a radar two (or more) receivers are used; their

sum provides the “Sum signal” and their difference the “Difference signal”, ∆(∆α). A uniformly

illuminated phase-monopulse array [?], which is receiving signals from a single scatterer, produces

the Difference signal in quadrature with the Sum signal:

∆(∆φ) = jΣ(∆φ) tan
πW sin ∆φ

λ
, (13)

where j
∆
=
√
−1, and W is the distance between the phase centers of the two antenna halves (we

will return to this formula later). Notice that the last equation is written in terms of ∆φ, which is

the angle increment to φ in the Q plane associated with ∆α. The angle φ is used here because the

line connecting the two phase centers is found in the Q plane. The angles ∆α and ∆φ are small

—in the order of 50, which is the typical antenna beam-width. Therefore, we can approximate
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their sin by the angles themselves, and express one in terms of the other by using a multiplying

constant, C, i.e., ∆φ = C∆α. From the geometry, cosα = cos γ cosφ. Differentiating that, gives

sinα∆α = cos γ sinφ∆φ + sin γ cosφ∆γ. For a fixed altitude and range (same range-gate),

∆γ ≈ 0. Therefore sinα∆α ≈ cos γ sinφ∆φ, and C
∆
= ∆φ/∆α ≈ sinα/(sinφ cos γ).

figure=/home/windchime/u/yair/tex/ps/mtifig4.eps,width=4in

Figure 4: The electronic DPCA block diagram

It is thus seen that choosing W = 2vxT/C can provide the 900 phase-shifted signal to be

added to the current (second) pulse and subtracted from the earlier (first) one, i.e., Ec2 and

Ec1 correspondingly. This relationship can be maintained by controlling the PRF, as was also

required for physical DPCA. We still have here displaced phase centers which are needed for the

realization of the Phase-Monopulse radar, but all the other requirements of the physical DPCA

are dropped. The block diagram of the electronic DPCA is shown in Fig ??. Each channel in the

figure is complex, i.e., it’s a phasor sampled at the PRF. The T block delays the E1 pulses so that

they align with those of E2, and thus can be subtracted on a pulse-by-pulse basis. After the final

subtraction, the square-law detector performs the I2+Q2 operation (in radar terminology: sum-

squared of the real and imaginary components of a complex signal), and the low-pass-filtering

(for the PRF). That results in the power, which, at this point, carries no Doppler information.

This power is ideally zero —but only for a single scatterer. In the case of many scatterers, there

is another phenomenon that tends to render this kind of processing ineffective, as we discuss

next.

2 PHASE-MONOPULSE RADAR

In this section we elaborate on the performance of a generic AMTI Phase-Monopulse radar in

some more detail. We develop the basic theory of operation and describe our simulation.

2.1 The Peculiarities of Clutter —Stationary Case

figure=/home/windchime/u/yair/tex/ps/mtifig6.eps,width=2.5in

Figure 5: Phase-Monopulse Geometry.

Figure ?? shows the geometry of a Phase-Monopulse antenna. The two phase centers are

separated by distance W , and the return signal from a single transmitted pulse arrives from
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direction θ with respect to the boresight (θ used here instead of ∆α or ∆φ to simplify notation).

The same signal travels an additional distance of W sin θ to arrive at phase center #2 compared

to phase center #1. This distance difference in the receiving path translates into a phase delay

of

ψ =
2πW sin θ

λ
≈ 2πWθ

λ
(14)

Denoting the signals at the two phase centers by z1 and z2, z2 = z1 exp{−jψ}. Defining the Sum

and Difference signals as Σ
∆
= z1 + z2 and ∆

∆
= z1 − z2,

∆

Σ
=

1− exp{−jψ}
1 + exp{−jψ} = j tan(ψ/2) = j tan(

πWθ

λ
) (15)

We see that the Difference signal is in quadrature (900 ahead) with the Sum signal. Also,

the above equation implicitly imposes a bound on W , because, if W is too large, θ becomes

ambiguous. It makes sense to require no ambiguities inside the main beam which translates to

ψ ≤ π ;
2πWθ

λ
≤ π ; W ≤ λ/B , (16)

where we equated θ with half the null-to-null power beam-width, B, of a single antenna lobe.

figure=/home/windchime/u/yair/tex/ps/mtifig7.eps,width=5in

Figure 6: Signal Vectors in Phase-Monopulse Radar for single (left) and two (right) scatterers.

Figure ?? shows (left) the vectors representing the complex signals z1 and z2 for a single

radar pulse as discussed above. In the case of a single scatterer, z1 = a1 and z2 = a2, where a1

and a2 are the signals arriving from that scatterer at the two phase centers. In this simple case

it is easy to see that the Sum and Difference signals are in quadrature due to the length equality

of z1 and z2. However, in the case of two scatterers, shown on the right of figure ??, z1 = a1 + b1

and z2 = a2 + b2, where b1 and b2 are the signals arriving from some other scatterer at the two

phase centers. Assuming that the two scatterers are seen at different squint angles, the phase

angles ψ and φ are —according to (??)— different. The angle α between a1 and b1 represents the

phase difference between the two scatterers’ signals as they arrive at the left phase center of the

antenna. This angle, as well as the scatterers’ amplitudes, are inconsequential, and, thus, were

chosen arbitrarily. It is easy to see that, because ψ 6= φ, the lengths of z1 and z2 are different,

and, thus, their sum and difference are no longer in quadrature as they were in the case of a

single scatterer.

In the general case, ground clutter is composed of infinite number of scatterers —each one

has its own random phase, amplitude, and direction of arrival. Therefore, the Sum and Difference

signals are generally not in quadrature, and the processing based on the relationship of (??) is
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incorrect. Because of that, it has been suggested [?] to estimate θ based on the projection of the

Difference signal on its nominal (single-scatterer) direction. As we have seen in (??), the nominal

∆ is 900 in advance of Σ. So nominally, −j∆ should be in the same direction as Σ. In reality

−j∆ is found at some non-zero angle δ from Σ. According to [?], (??) should be replaced by

tan
πWθ

λ
=
| ∆ |
| Σ | cos δ =

(−j∆
Σ

)
Re

=
∆ImΣRe −∆ReΣIm

| Σ |2 , (17)

where the Re and Im subscripts correspondingly denote the real and imaginary parts of the

signal.

Even this modified single-pulse (or instantaneous) processing may yield a completely wrong

angle-of-arrival, θ, in most practical cases, when the clutter is composed of infinite number of

scatterers. Again, using the example of only two scatterers at different squint angles, completely

wrong would mean that the equivalent θ for the combination of the two targets is out of the

angular span between them. To show that, let us first write the equations for the case of the two

targets discussed above:

Σ = z1 + z2 = a1 + b1 + a2 + b2 ;

∆ = z1 − z2 = a1 + b1 − (a2 + b2) (18)

Without loss of generality, we can take a1 = 1. Thus a2 = exp{−jψ}. The second target

contributes a signal of b1 = b exp{jα} at the left phase center (b is its absolute value), and

b exp{j(α− φ)} at the left phase center. Thus

Σ = z1 + z2 = 1 + b exp{jα}+ exp{−jψ}+ b exp{j(α− φ)} ;

∆ = z1 − z2 = 1 + b exp{jα} − (exp{−jψ}+ b exp{j(α− φ)}) (19)

Using (??), and defining k
∆
= πW/λ, we can express the phases by the corresponding squint

angles to the two targets, θa and θb. Thus ψ = 2kθa and φ = 2kθb, and

Σ = 1 + exp{−j2kθa}+ b exp{jα}(1 + exp{−j2kθb})

= 2 exp{−jkθa} cos kθa + 2b exp{j(α− kθb)} cos kθb ;

∆ = 1− exp{−j2kθa}+ b exp{jα}(1− exp{−j2kθb})

= 2j exp{−jkθa} sin kθa + 2jb exp{j(α− kθb)} sin kθb (20)

So, for this case, (??) can be expanded to

tan kθ =
0.5(sin 2kθa + b2 sin 2kθb) + b sin k(θa + θb) cos[α + k(θa − θb)]

cos2 kθa + b2 cos2 kθb + 2b cos kθa cos kθb cos[α + k(θa − θb)]
(21)
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There are a few special cases of interest to consider. First, when the two targets are located

at the same squint angle, that is, θa = θb, (??) resolves to tan kθ = tan kθa, so that θ = θa = θb,

which is what we would expect. So here, the radar measures the correct angle. Notice that the

value of b doesn’t appear because our processing includes amplitude normalization. Another set

of special cases arises when α + k(θa − θb) = 0. Then

tan kθ =
0.5(sin 2kθa + b2 sin 2kθb) + b sin k(θa + θb)

cos2 kθa + b2 cos2 kθb + 2b cos kθa cos kθb
=

sin kθa + b sin kθb
cos kθa + b cos kθb

(22)

When b = 1, this reduces to tan 0.5k(θa + θb), which yields a θ that equals the simple average of

θa and θb. However, with b = −1, we get

tan kθ =
sin kθa − sin kθb
cos kθa − cos kθb

= − 1

tan 0.5k(θa + θb)
(23)

The right-hand side of (??) can go to infinity whenever θa+ θb = 2nπ/k ; n = 0,±1,±2, etc. For

n = 0, we have θa = −θb, α = 2kθb. Since we defined α to be the phase of scatterer b at the left

antenna phase center, its phase at the source has to be zero. The phase α would result from the

geometry alone —since α = φ. This represents any dipole (in terms of its angular span) centered

on the boresight (θ = 0). In this case, the solution to the apparent squint angle of such a dipole

is that of tan kθ = ∞, which is the series of solutions θ = π(m + 1/2)/k ; m = 0,±1,±2, etc.

For example, with k = 10, we get phantom targets at ±90,±270,±450, etc. We have thus shown

that a single dipole centered on boresight shows up in the AMTI receiver as a series of fictitious

targets at angles that are unrelated to that of the dipole center or that of any of its elements.

The DPCA method, described in principle in Section 1, relies on receiving at two consecutive

pulses the same amplitude, and a phase difference that originates from the Doppler associated

with the aircraft motion alone. As long as these requirements hold —for the equivalent target

representing the above dipole, or any other combination of scatterers— the corresponding two

pulses will get cancelled by the circuit of Figure ?? even though they appear to originate from

some angle that has no relation to any physical location. However, because the aircraft moves

during the interpulse time, the geometry to the elements of the dipole changes, and thus the

dipole appears to have moved on the ground to some other location. This is known as the

phenomenon of Glint. In other words, the changing geometry due to the aircraft motion de-

correlates consecutive pulses (from clutter) very fast. We will next investigate this phenomenon.

2.2 The Glint Phenomenon —Dynamical Case

As we have seen, all the scatterers inside the beam-width and any given range-gate add up

to some equivalent target for that particular range-gate. The apparent angular location and
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figure=/home/windchime/u/yair/tex/ps/corresults.ps,width=4.5in

Figure 7: Correlation coefficients for clutter —averaged over all range-gates

amplitude of the equivalent target depend on the geometry between the radar and each one of

the various scatterers. Because of the aircraft forward motion, this geometry changes during the

interpulse time, so that the equivalent target for one pulse is different from that seen in the next

pulse. This is one form of Glint, or target scintillation, which degrades clutter rejection based

on pulse-to-pulse cancelation. We now want to estimate the severity of this problem.

Let us assume that there are two scatterers on the ground inside the same range-gate.

Scatterer # 1 is located at (x0, y0, 0) and # 2 at (x0 + ∆x, y0 + ∆y, 0). The initial range to both

scatterers, as measured by the first pulse, is r0 =
√
H2 + x2

0 + y2
0. By the time the next pulse

is received, the radar proceeded by a distance d = vT in the Y direction (see Figure ??). The

radar distance to Scatterer # 1 decreased by ≈ dy0/r0 and to Scatterer # 2 by ≈ d(y0 + ∆y)/r0.

So now, there is a range difference, δr, from the radar to these scatterers equal to d∆y/r0.

Denoting the ground distance between the two scatterers by l, ∆y ≈ lx0/
√
x2

0 + y2
0 ≈ lx0/r0 (for

low altitude, H). With that, δr ≈ dlx0/r
2
0. We now take l = r0B, so that the scatterers span

the beam-width, and also replace x0/r0 by sinφ (φ is the radar Azimuth angle). This yields

δr ≈ dB sinφ. The phase difference that δr causes between the two scatterers at the second

radar pulse is obtained as

µ = 360
2δr

λ
=

720vTB sinφ

λ
degrees, (24)

where the factor of 2 accounts for the two-way transmit/receive pulse travel time.

As an example, say we have two scatterers with equal (zero) phases, located, at θa = −0.019

rad and θb = 0.02 rad, The other parameters are α = 2kθb = 0.4 rad, b = −1, k = 10. Plugging

that into (??) yields θ = −8.240. This is the apparent squint angle as measured on the basis of

a single pulse. If we assume v = 150 m/s, T = 0.1 ms (so d = 1.5 cm), λ = 3 cm, B = 50 mrad,

φ = 300, (??) yields µ = 90. Repeating the same calculation of (??), but with µ added to α,

results in θ = −0.13180. So, we see that two consecutive pulses measured two completely different

squint angles. The DPCA method could still perform as expected even when the apparent θ has

no relationship to any physical angle —but only as long as this angle is constant over time, which,

as we have shown, is not the case. In reality, however, the Glint phenomenon does not have such

a dramatic effect as demonstrated here (to make a point); its effect is rather to decorrelate the

angle measurements as a function of the interpulse travel distance of the radar platform.

We used our phase-Monopulse simulation (see Section 2.6) to obtain estimates of the Glint

phenomenon in the general case, when a large number of scatterers is involved. Figure ?? shows
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figure=/home/windchime/u/yair/tex/ps/phase.ps,width=4.5in

Figure 8: Interpulse errors averaged over all range-gates

figure=/home/windchime/u/yair/tex/ps/rangegates1.ps,width=4.5in

Figure 9: Clutter correlation coefficients for 16 range-gates of 12.5 m

experimental correlation coefficients, averaged over 32 range-gates, for the Az and El errors as

a function of the interpulse travel distance, vT , as measured in wave-lengths. For example,

the azimuth error measurement resulting from a single pulse is only 80% correlated with that

measured from the previous (or next) pulse, if the platform advanced by 1.5 wave-length between

these pulses. For λ = 3 cm, this translates into 4.5 cm of interpulse travel. It can be seen that

the correlation coefficient for the El errors is much closer to unity. We also show the correlation

coefficient for cos(α) of (??), because it results from the angular errors, and is the one directly

related to the eventual double-pulse (or another-filter) cancelation error.

The above correlation coefficients can be used to yield estimates of the expected errors, as

shown in Figure ??. These are obtained —each from its corresponding correlation coefficient,

ρ— by using the relationship

e = σ
√

1− ρ2 (25)

For the above example, the expected Az error, between the instantaneous measurements at any

two adjacent pulses, is 0.019324
√

1− 0.82 = 0.0116, where 0.019324 is the measured Az standard

deviation (same for all pulses). The expected Az and El errors are shown for information only.

However, the directly relevant error is that of the phase between two adjacent pulses, because

it corresponds to 2η of (??), and thus, roughly, represents the value of the unavoidable residue

remaining after 2-pulse cancelation.

Notice that the phase error behaves like a quadratic, whereas the angular errors appear

to be linear. The reason is that there are two factors in (??) which cause the phase error

to increase with T ; one is the correlation coefficient of ∆α (very close to that of ∆φ), which

increases linearly with T , and the other is T itself, which appears in the equation. The phase-

error graph can, in principle, be used as follows. When the interpulse travel is 4.5 cm as above,

we read 2η = 0.114. So, the clutter suppression achievable due to using a 2-pulse canceler is

1/0.114=8.77 in amplitude, or 18.8 dB. If the platform travels only 1.5 cm, then 2η = 0.015, and

the corresponding numbers are 66.7 and 36.5 dB. This might suggest that increasing the PRF

(decreasing T ) will allow for effective clutter rejection. However, a similar effect also happens to

the target (or obstacle) signal.

Since the obstacle signal must appear in some specific range-gate, it is relevant to ask how

12



figure=/home/windchime/u/yair/tex/ps/rangegates2.ps,width=4.5in

Figure 10: Clutter correlation coefficients for 16 range-gates of 2.5 m

useful the average correlation coefficient is. To answer this question, we ran the simulation so as

to evaluate the correlation coefficient for each of 16 range-gates. That produced the results shown

in Figures ?? (range-gate of 12.5 m) and ?? (range-gate of 2.5 m). These results correspond to

the cosα graph of Figure ??. For clarity, the range-gate values were not specified in these figures,

but we found that adjacent range-gates produced disparate graphs. We could not discover any

regularity in these graphs. However, we do observe the following: 1) some graphs appear to be

periodic, 2) some go to negative values, 3) the range-gate size has little effect on the results. We

will return to the question of optimizing T for Target-to-Clutter maximization in Section 2.5.

2.3 Comparison With Amplitude-Monopulse Clutter Rejection

Here we show that Amplitude Monopulse receiver suffers from the same detrimental clutter

properties that undermine the Phase Monopulse receiver.

Let us consider an example of two scatterers: one of unity amplitude, zero phase, and located

on boresight; the other of amplitude a, phase α, and squint angle θ. The Sum signal is, thus,

1 + a exp{jα}, and the Difference signal is akθ exp{jα}, where k is the slope, or gain, of the

Azimuth error channel. In Amplitude Monopulse, like in Phase Monopulse, there might be phase

differences between the Sum and Difference channels. Therefore, similar to (??), we project the

Difference vector on the Sum vector. Since here the nominal Sum and Difference vectors are in

phase, (??) is replaced by

θequiv =
(

∆

Σ

)
Re

=
∆ReΣRe + ∆ImΣIm

| Σ |2 = aθ
a+ cosα

1 + 2a cosα + a2
(26)

When a = −1, and α = 0 (??) reduces to θ/2, but this involves the unstable operation of

dividing zero by zero. Although mathematically, the limit of (??) is θ/2, in practice one might

get any unpredictable result. So, our conclusion is that neither Phase- nor Amplitude-Monopulse

processing can overcome the intrinsic detrimental clutter properties that cause the equivalent

clutter “target” to change its apparent azimuth from pulse to pulse.

2.4 Geometrical-Errors Calculation

Here we want to derive the geometrical relationship between the radar Az/El errors and the

effective target direction —ignoring the Glint problem for the moment. Referring to Figure ??,
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the radar axis is pointing in the direction of the vector R0, as given by the angles (γ0, φ0). The

direction of the vector R, pointing to the effective target, is given by the angles (γ, φ). We want

to calculate (γ, φ) based on the Az/El angular errors between the above two vectors.

Let us denote the tangents of the Az and El error angles by ∆x and ∆z respectively;

these increments are aligned with the radar (X ′, Z ′) coordinates (the antenna pointing in the Y ′

direction). Unit vectors in the X ′ and Z ′ direction can be expressed in terms of the earth-system

unit vectors as

1x′ = [cosφ0, − sinφ0 cos γ0, sinφ0 sin γ0] ,

1z′ = [0, sin γ0, cos γ0] (27)

The unit vectors in the R0 and R directions can be written as

1R0 = [sinφ0, cosφ0 cos γ0, − cosφ0 sin γ0] ,

1R = [sinφ, cosφ cos γ, − cosφ sin γ] (28)

The unit vector 1R can also be expressed in terms of the Az/El errors as

1R =
1R0 + ∆x · 1x′ + ∆z · 1z′√

1 + ∆x2 + ∆z2
(29)

Plugging the expressions for the 1x′ and 1z′ unit vectors into the last equation, results in

1R = [sinφ0 + ∆x cosφ0, cosφ0 cos γ0 −∆x sinφ0 cos γ0 + ∆z sin γ0,

− cosφ0 sin γ0 + ∆x sinφ0 sin γ0 + ∆z cos γ0]/
√

1 + ∆x2 + ∆z2 (30)

Equating the components of 1R in (??) and (??), we have:

sinφ =
sinφ0 + ∆x cosφ0√

1 + ∆x2 + ∆z2

cosφ cos γ =
cosφ0 cos γ0 −∆x sinφ0 cos γ0 + ∆z sin γ0√

1 + ∆x2 + ∆z2

− cosφ sin γ =
− cosφ0 sin γ0 + ∆x sinφ0 sin γ0 + ∆z cos γ0√

1 + ∆x2 + ∆z2
(31)

which constitutes a set of three consistent equations for the two unknown angles φ and γ. The

solution is

φ = sin−1

[
sinφ0 + ∆x cosφ0√

1 + ∆x2 + ∆z2

]

γ = sin−1

sin γ0(cosφ0 −∆x sinφ0)−∆z cos γ0√
(cosφ0 −∆x sinφ0)2 + ∆z2

 (32)
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Once we have found φ and γ, we can get α from

cosα = cosφ cos γ , (33)

and, in theory, predict the exact Doppler frequency created by the equivalent clutter target.

Knowing that, we can frequency shift the received signal down to baseband and expect to get

all pulses in phase —ready for pulse subtraction. We have thus developed a processing method,

similar to the one described in Figure ?? and ??, which has some advantages over that method.

First, there is no need for phasors compensation, second, there is no need for the approximation

we did in neglecting the vy term of (??), and third, there is no need to approximate ∆α by

∆φ as was done in (??). However, recall that the above is a purely geometrical relationship,

and can only translate measured errors —whether accurate, or corrupted by Glint— into the

equivalent-target viewing angles φ and γ.

2.5 Clutter Cancelation

Here we elaborate on the clutter-cancelation technique that was introduced earlier in its simplest

form of 2-pulse subtraction. It is more useful to use a Low-Pass-Filter of second order for that

purpose because there is better control on the filter characteristics, that is, the width of the stop

band and the flatness of the pass band.

figure=/home/windchime/u/yair/tex/ps/double.ps,width=3.5in

Figure 11: Low-Pass-Filter for Clutter Cancelation

figure=/home/windchime/u/yair/tex/ps/freq.ps,width=4in

Figure 12: Frequency Response of Low-Pass-Filter

Figure ?? shows a discrete second-order Low-Pass-Filter. The 1/Z blocks represent a delay

of T in the Z-Transform domain, and the k1, k2 blocks are two gains to be determined. The

Transfer-Function of this circuit is

y

x
=

(Z − 1)2

Z2 − (k1 + k2)Z + k1

, (34)

and its frequency response for some combinations of k1 and k2 is shown in Figure ??; it is obtained

by replacing Z with exp{jω} and scanning ω in the range of 0 to 1. We chose k1 = 0.6, k2 = 0.8.

In order to avoid an initial transient, we initialize the outputs of the two delay blocks to zero.

As we have shown above, the apparent clutter “target” —being composed of all the scatterers

inside any single range-gate— appears at some effective “center of gravity”–direction per each
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transmitted/received pulse. The aircraft motion during the interpulse time causes Glint, that is,

instability in the apparent direction. Analyzing the Glint statistics turns out to be unwieldy and

not very useful, so we opted for deriving this statistics through Monte-Carlo simulation; that

will be discussed next.

In Section 2.2 we already introduced the experimental data for the cross-correlation and

the resulting expected phase errors between any two consecutive measurements (pulses) due to

clutter. Here we discuss the tradeoffs of the interpulse time, T , with respect to signal-to-clutter

optimization.

In consecutive-pulse clutter cancelation, we have two clutter vectors, of some length C, with

the clutter phase-error, say εc, between them. Similarly, we have two such vectors for an obstacle

that travels at a ground speed vt. Their lengths is denoted by S, and the phase angle between

them is εs = 4πvtT/λ. The obstacle and clutter vectors at the first pulse have some random

phase angle, φ, between them. The vector sums of clutter-plus-obstacle amplitudes at the first

and second pulses can thus be written as

E1 = C + S exp{jφ}

E2 = C exp{jεc}+ S exp{j(φ+ 4πvtT/λ)} (35)

After 2-pulse cancelation, we get the residual amplitude

∆E = E2 − E1 = C(exp{jεc} − 1) + S exp{jφ}(exp{j4πvtT/λ} − 1) (36)

The residual power, averaged over the uniformly-distributed phase, φ, is

PC+S = ∆E∆E∗ = 4C2 sin2 εc/2 + 4S2 sin2 2πvtT/λ , (37)

where the superscript * denotes complex conjugation. The signal-to-clutter ratio can thus be

written as

SCR
∆
=
PC+S

PC
= 1 +

S2 sin2 2πvtT/λ

C2 sin2 εc/2
(38)

Since the above phase angles are small, we can approximate the sin by its argument. So we get

SCR ≈ 1 +
(
S

C

)2 (4πvtT

λεc

)2

(39)

Our goal is, of course, to maximize the SCR with respect to T . Let us use the results for the

average (over all range-gates) clutter phase-error from Figure ??. The phase-error graph can be

represented as a quadratic, that is, εc ∝ T + aT 2 (with a = 13, 000), because εc = 0 for T = 0.

Thus, from (??), SCR ∝ 1/(1+aT )2. Since a is positive, the SCR function has no extremum, and
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it achieves its maximum when T = 0. This result is not very surprising because we have ignored

all sources of electronic noise —assuming that the clutter dominates the noise. It is also not very

practical, because, as we have seen earlier, the clutter correlation coefficients, as averaged over all

range-gates, are not indicative of those for any given range-gate. If we repeat the same exercise

for range gate # 6 (for which we later present simulation results), we get a distinct maximum

at l = 3.5λ. In general, some of the range gates yield maximum SCR at about the same l, and

some have no extremum and yield maximum values at l = 0. The simulation results presented

in Section #4 will shed some more light on the subject of PRF (or T ) optimization.

2.6 Scenario and Radar-Signal Generation for Phase Monopulse

In the simulation, we separate the generation of radar signals from their processing; that approach

is taken to facilitate substitution of the simulated signals by real radar data.

In our scenario, the aircraft is flying level at constant altitude, H, and velocity, V , along

the Y axis, as shown in Figure 2. The antenna is pointing in the R0 direction as determined by

the angles γ and φ. We assume a flat terrain having a radar scatterer every, say, 5 m in X and

in Y . For each scatterer, we create two normally-distributed and independent random numbers,

having a variance of some σ2, to represent the real, ΓRe, and imaginary, ΓIm, components of the

scatterer’s radar cross-section. Thus, each scatterer has a Rayleigh amplitude distribution and

a uniform phase distribution. Based on the assumed power beam-width , B, of the antenna, we

limit the patch of terrain that contributes clutter to be ±3B in both the X and Y coordinates.

The patch is centered around the ground point c of Figure 2. That way we can include clutter

contributions through the main antenna lobe as well as through the most-significant sidelobes.

For Phase-Monopulse, the antenna is assumed to have 4 feeds that create 4 identical radiating

lobes shifted horizontally and vertically by the feeds’ lateral separation, W , in the X ′ and Z ′

antenna coordinates (the antenna boresight is in the Y ′ direction). Each lobe is assumed to have

a one-way amplitude pattern of sinc2, that is,

G(ε) =
sin2(πε/B)

(πε/B)2
, (40)

where ε2 = ε2x + ε2y, and the latter are the squint angles from boresight in the antenna coordinate

system.

Generating the radar clutter signal for a single pulse consists of integrating the contributions

from all scatterers in the above-defined ground patch —given the instantaneous geometry. So,

for each scatterer we do the following:
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1. Calculate the nominal range, r, from the scatterer to the antenna center. Since the range

is in the order of kilometers, whereas range increments per pulse are in the order of cen-

timeters, the computation accuracy becomes of concern. Therefore we calculate the range

to each scatterer incrementally by using the updated range derivative. Thus, the range for

the nth pulse for some scatterer is given by

rn = r0 − vT
(
y0

r0

+
y1

r1

+ · · ·+ yn−1

rn−1

)
(41)

2. Transform the scatterer’s earth coordinates into radar coordinates.

3. Using the x′, y′, z′ scatterer’s radar coordinates, calculate the approximate squint angles

εx = x′/y′ and εz = z′/y′ and the total angular error ε.

4. Find the antenna gain, G(ε), in that direction by using the normalized total angular error,

ε/B, as the argument to the sinc-squared function.

5. Multiply the real and imaginary Radar-Cross-Section (RCS) of that scatterer by the an-

tenna gain, that is, σRe = ΓReG(ε), and σIm = ΓImG(ε).

6. Calculate the nominal phase delay due to the range between the scatterer and the antenna

center. That is given by φ0 = 4πr/λ. Notice that the range is counted twice for the

transmit and receive paths.

7. Calculate the incremental horizontal and vertical phase corrections due to the lateral shifts

of the four antenna feeds with respect to the antenna center. That is based on the following:

r± =
√

(x′ ± dh)2 + y′2 + (z′ ± dv)2

=
√
x′2 + y′2 + z′2 + d2

h + d2
v ± 2x′dh ± 2z′dv ≈ r ± x′dh

r
± z′dv

r
, (42)

where r± is the range to one of the feeds, (x’,y’,z’) are the scatterer’s coordinates in the

antenna coordinate system, dh = dv = W/2 are the feed horizontal and vertical shifts from

the antenna center (they are taken here to be equal, but, in general, they can be different).

Because the X ′ axis points to the antenna right, and the Z ′ axis points up, the range to

the right-up feed, for example, is obtained by using the minus signs on the two correction

terms above. The signs for the other three feeds are determined accordingly. Notice that

these corrections are required on the receive path only, because it is assumed that either

all four feeds are used in unison, or an additional center feed is used for transmit.
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8. Add up the phases due to range and feed shifts for the four feeds, that is,

φ left down = φ0 + k(+x′ + z′


